

Management of European Green Crab in Oregon

ODFW OAR 635-056-0070 / Controlled Species; 635-056-0075 / Controlled Fish

(3) Controlled Crustaceans

 (a) Green crabs (Carcinus maenas) may be harvested recreationally pursuant to OAR 635-039. Once harvested, it is unlawful to return green crab to state waters. It is unlawful to take green crab for commercial purposes.

Note: recreational crabbers must keep all green crab, regardless of size or gender

ш

Recreational Fisheries

Issue. increase daily catch limit for European green crab

Analysis:

- Existing ODFW rules allow take of 10 crab per person per day
- Public interest in increased catch
- Recreational take is likely insufficient to control growing population

Recommendation to OFWC:

 Increase recreational daily catch limit to 35 crab per person per day

Notes:

- Limit of 3 rings, lines, pots, traps, snares, etc. applies to all crab, including European green crab
- CA daily limit = 35

Harmful Algal Blooms and Oregon's Shellfish Fisheries

Biotoxin Type:	Paralytic Shellfish Poisoning (PSP)	Amnesic Shellfish Poisoning (ASP)	Diarrhetic Shellfish Poisoning (DSP)
Microscopic Phytoplankton: "Harmful Algal Bloom"	20 µm		Patrolikans HK
Caused by:	Dinoflagellate Alexandrium spp.	Diatom Pseudo-nitzschia spp.	Dinoflagellate Dinophysis spp.
Toxin Produced:	Saxitoxin (Neurotoxin)	Domoic Acid (Neurotoxin)	Okadaic Acid (Cytotoxin)
Alert Action Level:	≥ 80 µg/100g tissue	≥ 20 ppm in tissue	≥ 16 µg/100g tissue

European Green Crabs are they here to stay?

Sylvia Yamada, Integrative Biology, OSU Shon Schooler, South Slough NERR

Native range and global introductions

10° C and 18° C isotherms

Break

Returning at 2:15 p.m.

Why should we care? <u>Predators</u> and Ecological Engineers

*cockles, mussels, urchins, worms *soft-shelled clam decline in 1950's 14 million lbs. → 2.3 million lbs.

Why should we care? Predators and Ecological Engineers

Kate Sherman

Davidson Current is like a giant conveyor belt

Larval recruitment from established populations in San Francisco Bay, California

Growth of the 1998 Year Class of Carcinus maenas

Average catches of Adult Green Crabs in Coos Bay

Recruitment of young Green Crabs

North – self-maintaining populations from BC and WA Carolyn Tepolt, WHOI

Local – "self-seeding" Oregon populations Alan Shanks, OIMB

South - self-maintaining populations from California

Makah

Willapa

Tillamook Netarts

Coos Bay

Cooperative Management

Cooperative management

Assessment & longer-term removal

Early Detection Network

Washington Sea Grant "Crab Team" – 55 sites; tribes, partners & 160 volunteers

Bay

Tribal Co-Managers and Partners

- Early detection
- Rapid response
- Removal trapping

Success Stories

from 0.05 > 0.01 crabs per/trap

drayton harbor
blaine, washington
48°58'59.36"N 122°47'3.07"W

CANADA
UNITED STATES
Cain Creek
Park
Marine
Park
Marine
Semiahmoo
Bay

Renort

Marine
Semiahmoo
Park

Drayton Harbor

California
Creek

Drayton Harbor

California
Creek

California
Creek

Drayton Harbor

from $0.08 \rightarrow 0.03$ per trap

Trapping Success due to:

- Early detections
- Very small populations, < 0.10 crabs per trap
- Small sites, < 4 square miles</p>
- Distribution restricted mainly to edges
- High effort 3-5K traps annually
- Relative low larval pressure from outside locations due to climate patterns or due to geographic location

Slide courtesy of Emily Grason, Washington Sea Grant

Lummi Nation Sea Pond

750 acres shellfish and salmon aquaculture pond

shallow warmer water EGC larvae are retained (incubator for EGC)

2021 Average CPUE (# crabs/trap/day)

Water Body	EGC Total	# Traps	CPUE
Dungeness Spit	12	947	0.01
Drayton Harbor	146	5,493	0.03
Lummi Sea Pond	86,028	16,591	4.16
Willapa Bay	10,335	2,460	3.44
Yaquina Bay	162	28	5.78
Coos Bay	1,164	184	6.33

Maximum Abundance of the European green crab

(for "ballpark" comparison only)

- *Aveiro Lagoon, Portugal
- * East Coast, North America
- *Tasmania, Australia
- * Bolinas Lagoon, CA
- * Pipestem Inlet, BC
- *Yaquina Bay, OR
- *Coos Bay, Or

- >100/trap/hour
- ~500 /trap/day
- ~300 /trap/day
- ~200 /trap/day
- ~200 /trap/day
 - ~25 /trap/day
 - ~35 /trap/day

Governor Jay Inslee's Emergency Proclamation

- * Expansion of the EGC infestation poses imminent danger to Washington State's marine environment, marine-based economy, and the cultural well-being of both tribal and non-tribal residents.
- * The costs of a delay counteracting the infestation are unacceptably high.
- *I order WDFW to begin implementation of emergency measures as necessary to effect the eradication of or the prevent the permanent establishment and expansion of EGC. (\$8.5 million)

Next Steps

This is an ongoing emergency, rapidly evolving, and will require long-term management. We are still in early stages of this EGC invasion. Next steps include:

- Short-term funding state and federal funding requests in process
- Setting up statewide and transboundary management structure
- 3. Implementing collaborative management actions to reduce EGC populations to below sustainable or impact levels
- Long-term federal funding TBD for Pacific States and Tribes
- 5. Long-term Transition to greater local management

Recreational Fisheries

<u>Issue</u>. increase daily catch limit for European green crab

European green crab (Carcinus maenas)

- Mid-sized (3-4" adult) shore crab inhabit mid-region of estuaries
- Variable coloration (green, brown, yellow, red, blue)
- High likelihood for mis-identification with native crab
- Predators that consume bivalves, oysters, worms, other crab

Harmful Algal Blooms and Oregon's Shellfish Fisheries

Importance of HABS to **Human Consumption of** Shellfish:

Cooking does not destroy marine biotoxins!

ODFW / Shellfish: Monitoring of HABs in surf-zone marine waters

ODA / Food Safety: Routine testing for Domoic acid in shellfish tissues:

- ✓ Dungeness crab (ocean)
- √ Razor clams (beaches)
- ✓ Mussels (rocky shores)

No routine DA testing for bays / estuaries:

Dungeness crab Red rock crab

Green crab

Bay clams

Softshell clams

Regional Management in the Pacific Northwest

Grosholz & Ruiz, 2002. Management Plan for the European Green Crab (US Aquatic Nuisance Species Task Force)

- evaluate the feasibility of management options for prevention, eradication, and control (2003-2015)
- coordinate the activities of scientists and agencies, and develop a plan for information sharing and data management
- phased implementation plan with timetables and costs for priority tasks, and entities responsible for implementation

> Effective plan for early phase of EGC spread / update is urgently needed

Regional Management in the Pacific Northwest

U.S. Environmental Protection Agency, 2008. Ecological and Economic Impacts and Invasion Management Strategies for the European Green Crab

Ecology and Dispersal	Overview of Ecological Impacts	
Modeling Economic Impacts to Commercial Shellfish	Economic Impacts to Recreational Shellfish	
Damages to Eelgrass	Invasion Management and Control Strategies	

<u>Conclusions</u>: total losses estimated at \$19 - \$23M per year due to damage to commercial and recreational shellfish and eelgrass

Prevention & Containment

Detection & Forecasting

Eradication, Control, & Mitigation

Management of European Green Crab in Oregon

Management Actions for OR:

Risk Assessment

Prevention and Containment

Monitoring, Detection and Forecasting

Eradication and Control

Mitigation of Impacts

Awareness, Education and Outreach

Scientific Research

Strategies for Eradication, **Control and Mitigation:**

- Population small with no local recruitment / Eradication
- Population established with local recruitment / Control and Containment (selective harvest, biological, chemical, genetic control)
- Population well established / Mitigation of Impacts

Urgent: Risk Assessment required for 2022-2035

Management of European Green Crab in Oregon

Recommendation:

Risk Assessment for European Green Crab in Oregon Waters

- History, threats, and ecological impacts
- Risk assessment for Oregon
- Monitoring and observations
- Control actions
- Research and evaluation
- Regional coordination and management

Urgent: Risk Assessment required for new phase of European green crab invasion (2022-2035)

Questions and Discussion:

